The X-ray LHB

K.D.Kuntz

(Henry A. Rowland Dept. of Physics & Astronomy)

With a great deal of help from my friends!

Basics

Astronomers and Physicists disagree:

Transitions in O⁺⁷ produces lines labeled OVIII

In charge exchange O⁺⁷ is the parent species producing OVII

Absorption: $\sigma \sim E^{-8/3}$

the lower the photon energy, the more likely to be absorbed

The X-ray Background (ca. 1960)

- Studied in 2-10 keV band (Giacconi 1962)
- Power law spectrum
- At lower energies should be entirely absorbed by the neutral H in the Galactic plane
- Observations revealed ¼ keV emission everywhere, including the Galactic plane

Bowyer et al.(1968), Henry et al.(1968), Bunner et al.(1968)

The fundamental surveys: Wisconsin

- All-sky rocket borne survey
- Executed 1972-1980
- 6.5° resolution
- In C band $\tau=2$ (15% trans.) at $n_H \sim 5 \times 10^{20}$ cm⁻²
- Expect to see Gal. disk shadow extragalactic emission

The fundamental surveys: Wisconsin

• No small scale shadows...

The fundamental surveys: Wisconsin

...large-scale anticorrelation in B band!

An Old Controversy

Assuming a uniform distribution of nH, three ways of producing the anticorrelation:

- 1. Absorption all emission extragalactic Can't work with reasonable cross-sections
- 2. Displacement (cavity) all emission local
- 3. Absorption and emission interleaved

The Local Cavity

Local ISM remarkably deficient in neutral gas

• Knapp (1975) from $n_H(b)$

The Local Cavity

Local ISM remarkably deficient in neutral gas

- Knapp (1975) from $n_H(b)$
- Frisch & York (1983) & Paresce (1984):absorption line studies

The Local Cavity

Local ISM remarkably deficient in neutral gas

- Knapp (1975) from $n_H(b)$
- Frisch & York (1983) & Paresce (1984):absorption line studies
- Sfeir et al (1999)

An Old Controversy

Assuming a uniform distribution of nH, three ways of producing the anticorrelation:

- 1. Absorption all emission extragalactic Can't work with reasonable cross-sections
- 2. Displacement (cavity) all emission local Fit well with local ISM knowledge
- 3. Absorption and emission interleaved

An Old Controversy

Assuming a uniform distribution of nH, three ways of producing the anticorrelation:

- 1. Absorption all emission extragalactic Can't work with reasonable cross-sections
- 2. Displacement (cavity) all emission local Fit well with local ISM knowledge
- 3. Absorption and emission interleaved Demonstrated by ROSAT

The fundamental surveys: ROSAT

- All-sky satellite borne survey
- Executed 1990-1991
- 12' effective resolution

The fundamental surveys: ROSAT • Lots of shadows by small-scale clouds

The fundamental surveys: ROSAT

• Even the most opaque clouds show foreground emission

L/D Decomposition

- Assume background and foreground flat
- Plot I_X vs. n_H
- Fit $I_{obs} = I_L + I_D e^{(-\sigma n)}$

L/D Decomposition Caveats

- Flatness requires small area
- nH dynamic range requires large area
- Unreliable if multiple interleaved components
- Must know background spectrum to get σ_{eff}

- L/D Decomposition
 - C band works well
 - M band (3/4 keV) clouds not sufficiently opaque
- Observe at E such that Local Cavity walls are opaque
 - Be band and (to some extent) B band

What do we find?

- B/Be~constant $\rightarrow n_H < \text{few} \times 10^{18} \text{ cm}^{-2}$
- C_L :B:Be or $R2_L$: $R1_L \rightarrow model \rightarrow kT \sim 10^6 K \rightarrow \epsilon$ since R_{max} set by the Local Cavity size

$$C_{L} = \int_{0}^{R} \epsilon n_{e} n_{i} dV \rightarrow n_{e} \sim 0.002$$

$$\rightarrow P/k \sim 1.5 \times 10^{4} \text{ cm}^{-3} \text{K \& c}_{s} \sim 100 \text{ km/s}$$

- \rightarrow crossing time \sim few $\times 10^6$ yrs
 - →emitting region likely in equilibrium
 - $\rightarrow \varepsilon$ is the same everywhere and
 - $R_{emit}(l,b)=fI_L(l,b) \rightarrow shape of emitting region$

Shape reflects anticorrelation of B or C_L and n_H!

Scaling the LHB

MBM12 shadows the LHB emission

 $R=60-90 \text{ pc } I_L=347\times10^{-6} \text{ counts/s/arcmin}^2 (R12)$

Other MBM clouds w/o shadows place consistent limits Scaling does not significantly violate Sfeir boundary

What else do we learn?

- There is a gradient in the emission (Snowden et al 1990)
 - B/C is higher towards l=168°, lower towards G.C
 - Temperature is lower towards l=168° (log T=5.9 vs. 6.0)
- Similar result from shadow analysis
 - $-\log T = 6.02 \text{ vs. } 6.13$

Spectroscopy

Spectroscopy:DXS (Sanders 2001)

• 148-295 eV with a resolution of 4 eV

Spectroscopy: DXS (Sanders 2001)

- 148-295 eV with a resolution of 4 eV
- 0.26 sr FOV

Spectroscopy:DXS

- Lines! → thermal or quasi-thermal
- R&S model (CIE) does not work
- R&S model with Mg, Si, Fe adjusted down by 3X
- Non-CIE models worked no better

Spectroscopy:DXS

Potential Problems:

- Bad or missing atomic data
- Non-CIE parameter space is large
- Complex line of sight
 - Spans a range of different R2/R1
 - Background model
 - Absorption due to cavity wall

Spectroscopy: CHIPS (Hurwitz 2005)

• 82.65-61.99 eV at a resolution of 0.6eV

Spectroscopy: CHIPS (Hurwitz 2005)

• 82.65-61.99 eV at a resolution of 0.6eV

Spectroscopy: CHIPS (Hurwitz 2005)

Fe IX is 6 LU (photon/cm²/s/sr)

- Best fit 10^{5.8}K, EM=0.00014 cm⁻⁶pc (solar abund)
 - $-10^{6.0}$ K, EM=0.00042 cm⁻⁶pc at 1/3 solar
 - EM~0.0039 cm⁻⁶pc (ROSAT) values requires 1/16 solar
- Consistent with WFC(?) EUVE (Jelinsky et al. 1995)
- Marginally consistent with Wisc. data (Bellm & Vaillancourt 2005)

Spectroscopy:XQC (McCammon 2002)

- 60-1000 eV at a resolution of 9eV
- FOV~1 sr

Spectroscopy:XQC (McCammon 2002)

- 60-1000 eV at a resolution of 9eV
- FOV~1 sr

Spectroscopy:XQC (McCammon 2002)

Spectrum includes both LHB and Galactic Halo (but not at Fe IX) FeIX, FeX, FeXI = 100±50 LU, but bright CHIPS region Marginally consistent

Chandra/XMM/Suzaku

- Resolution of 40 eV at 500 eV
- Need higher n_H to block non-LHB emission (5×10²¹) Or model transmission of background spectrum
- Pessimist: measuring only high-E tail of LHB
- Optimist: measuring OVIII, OVII, & OVI (FUSE)

Chandra/XMM/Suzaku

Object	n _H	Instr.			Log(T)	OVII (LU)	OVIII (LU)	Flare/ SWCX
MBM12	3-8e21	Chan	Smith et al			1.75±0.55	2.34±0.36	f/major
MBM12	3-8e21	XMM	Freyberg&Breits.		6.17			f/major
MBM12	3-8e21	Suz	Smith et al	on/off	<6.22	3.5	0.25±0.1	-/minor
Mag	2.9e21	XMM	Snowden			2.7±0.4	0.39±0.17	-/minor
MBM20	2e21	XMM	Galleazzi et al	on/off	6.04-6.08	3.89±0.56	0.68±0.24	f/minor
MBM20	2e21	Suz	Galleazzi et al					
Filament	9.6e20	XMM	Henley et al	on/off	6.06-	3.4±0.5	<1.0	f/minor
Filament	9.6e20	Suz	Henley&Shelton	on/off	5.94-6.00	1.1±1.1	1.0±1.1	-/some
L=111°	1e20	XMM	Kuntz&Snowden		6.06-6.12	1.75±0.7		-/minor

- •All use ROSAT to normalize
- •The lower the n_H, the easier to swap flux from foreground to background
- •Strongly model dependent
- •Sensitive to assumed abundances

Chandra/XMM/Suzaku

Smith et al (2007)

Suzaku observation of MBM12

- Measure of OVII and limit of OVIII \rightarrow limit on T (kT=0.146 keV)
- Measure of OVII and T (10^6 K) \rightarrow emissivity \rightarrow overpredicts R12 by 3X
 - Depleted abundances
 - Out of equilibrium (variation in OVII, gradient)
 - OVII is just too high (Koutroumpa 2008; SWCX)

Local – highly time variable, strongly look-direction dependent

- Magnetosheath
- Exosphere
- Local ISM/local heliosphere (~few a.u.)

Non-local – only slowly variable, but look-direction dependent

- Remainder of heliosphere
- Heliopause

Observed=LHB+helio(t)+exo(t)+mag(t)

Observed = LHB + min(helio) + (helio(t) - min(helio)) + exo(t) + mag(t)

RASS

Observed=LHB+helio(t)+exo(t)+mag(t)

Observed = LHB + min(helio) + (helio(t) - min(helio)) + exo(t) + mag(t)

RASS

RASS and Wisconsin surveys should have very different min(helio) contributions

- No offset between RASS R12 and Wisconsin C
 - Total heliospheric SWCX small, or
 - Total heliospheric SWCX very stable

Snowden et al.

SWCX & Spectroscopy

Two XMM spectra of the same region: HDFN

- •SWCX particularly strong in the prime diagnostic lines OVII and OVIII
- •Collier et al. (2007) and Koutroumpa (2008) agree on non-magnetosheath

SWCX & Spectroscopy

Extend the same method to the XMM archive (Kuntz&Snowden)

- Multiple observations of the same blank field
- Correlate changes in OVII and OVIII with SW and geometry

For most observations Δ line $\leq \sigma$

SWCX & Spectroscopy

- 1. Looking near nose with quiescent SW $\rightarrow \Delta$ line insig.
- 2. Looking through flanks w/ high SW $\rightarrow \Delta$ line large
- 3. Large \triangle line w/ low SW \rightarrow SW fronts missed by ACE

SWCX & LHB

- Flux reduced $I = fI \rightarrow n = n\sqrt{f}$ and $P = P\sqrt{f}$
- Size no change

SWCX & LHB

- Flux reduced $I = fI \rightarrow n = n\sqrt{f}$ and $P = P\sqrt{f}$
- Size no change
- Shape may match the Local Cavity, may not
- Gradient dipole orientation is same as ISM wind direction
- Temperature unknown

SWCX & LHB

- DXS effected only by heliospheric SWCX
- CHIPS parent species most abundant in SW, but...
 - Does this make the problem worse?
- XQC the slow low density SW favors FeIX
- XMM observation geometry is important!
- SXG!

The Once and Future LHB

LHB Studies should return to their roots: B&Be bands

- Maximize the local/minimize the distant emission
- Lower column density clouds to be used as shadowing targets But...
- Energy region for which atomic data more poorly known